Cryptography and Blockchains: Building the Bedrock of Information Society

Ueli Maurer

ETH Zürich

Univ. of Copenhagen, June 24, 2019, Copenhagen.
Whitfield Diffie (*1944)
Martin Hellman (*1945)
Inventors of public-key cryptography
James Massey (1934 USA – 1913 Copenhagen)

Founder of the IACR
(International Association for Cryptologic Research)
Peter Landrock (born 1948)

Eminent Danish cryptographer
physical objects \rightarrow digital objects
physical objects → digital objects
physical objects → digital objects
physical objects → digital objects

01101011010010111110101
physical objects → digital objects

Effect of digital objects in the real world:

011010110100101111101011
Effect of digital objects in the real world:

- execution of a program on a computer
physical objects \rightarrow digital objects

0110101101001011111101011

Effect of digital objects in the real world:

• execution of a program on a computer
• transfer my entire account balance to account XY
Effect of digital objects in the real world:

- execution of a program on a computer
- transfer my entire account balance to account XY
- presentation using a virtual-reality interface
physical objects \rightarrow digital objects

Effect of digital objects in the real world:

- execution of a program on a computer
- transfer my entire account balance to account XY
- presentation using a virtual-reality interface
- launch a nuclear missile
physical objects → digital objects

Effect of digital objects in the real world:

- execution of a program on a computer
- transfer my entire account balance to account XY
- presentation using a virtual-reality interface
- launch a nuclear missile
- trigger the end of humanity
physical objects \rightarrow digital objects

Dilemma: functionality \leftrightarrow security

Effect of digital objects in the real world:

- execution of a program on a computer
- transfer my entire account balance to account XY
- presentation using a virtual-reality interface
- launch a nuclear missile
- trigger the end of humanity

01101011010010111110101
physical objects \rightarrow digital objects

Dilemma: functionality \leftrightarrow security

Functionality: One can efficiently decrypt using the key.

Effect of digital objects in the real world:

- execution of a program on a computer
- transfer my entire account balance to account XY
- presentation using a virtual-reality interface
- launch a nuclear missile
- trigger the end of humanity
Physical objects \rightarrow digital objects

Dilemma: functionality \leftrightarrow security

Functionality: One can efficiently decrypt using the key.

Security: One can not efficiently decrypt without the key.

- execution of a program on a computer
- transfer my entire account balance to account XY
- presentation using a virtual-reality interface
- launch a nuclear missile
- trigger the end of humanity ...
Dilemma: functionality ↔ security

Functionality: One can efficiently decrypt using the key.

Security: One can not efficiently decrypt without the key.

⇒ One cannot test or measure security. One can only prove it (mathematically).

- launch a nuclear missile
- trigger the end of humanity
Information security: 2 types

1. “Protective” security
Information security: 2 types

1. “Protective” security
 - defensive view
 - protect against system flaws and attacks
 - mission of software design/ formal methods
Information security: 2 types

1. “Protective” security
 - defensive view
 - protect against system flaws and attacks
 - mission of software design/ formal methods

3 dilemmata:
 • Functionality/security tradeoff dilemma
 • Specification complexity dilemma
 • Implementation impossibility dilemma
Information security: 2 types

1. “Protective” security
 - defensive view
 - protect against system flaws and attacks
 - mission of software design/ formal methods
Information security: 2 types

1. “Protective” security
 – defensive view
 – protect against system flaws and attacks
 – mission of software design/ formal methods

2. Construction of virtual trusted systems
Information security: 2 types

1. “Protective” security
 - defensive view
 - protect against system flaws and attacks
 - mission of software design/ formal methods

2. Construction of virtual trusted systems
 - mission of cryptography
Information security: 2 types

1. “Protective” security
 - defensive view
 - protect against system flaws and attacks
 - mission of software design/ formal methods

2. Construction of virtual trusted systems
 - mission of cryptography
 - virtual systems are also economic systems
Virtual Trusted Systems

P1
P2
P3
P4
P5
P6
P7
T
Virtual Trusted Systems
Virtual Trusted Systems

Theorem [LSP80]: This is possible if and only if less than 1/3 of the parties are corrupted.
Theorem [LSP80]: This is possible if and only if less than $1/3$ of the parties are corrupted.
Virtual Trusted Systems

Theorem [LSP80]: This is possible if and only if less than 1/3 of the parties are corrupted.
Virtual Trusted Systems

Theorem [LSP80]: This is possible if and only if less than 1/3 of the parties are corrupted.
Theorem [LSP80]: This is possible if and only if less than 1/3 of the parties are corrupted.
Virtual Trusted Systems

Examples: T can be a
Virtual Trusted Systems

Examples: T can be a

- a secure channel between 2 entities
Examples: T can be a

- a secure channel between 2 entities
- voting system
Virtual Trusted Systems

Examples: T can be a

- a secure channel between 2 entities
- voting system
- virtual central bank
Examples: T can be a

- a secure channel between 2 entities
- voting system
- virtual central bank
- programmable transaction system
Virtual Trusted Systems

Scientific techniques:

- Consensus and Byzantine agreement protocols
- Secure multi-party computation (MPC)
- Blockchain protocols
Final remarks
Final remarks

- Cryptography as the core enabling science of constructing virtual systems
Final remarks

- Cryptography as the core enabling science of constructing virtual systems
- Economic science of virtual system construction
Final remarks

- Cryptography as the core enabling science of constructing virtual systems
- Economic science of virtual system construction
- We have only (or not even) seen the tip of the iceberg.
Final remarks

- Cryptography as the core enabling science of constructing virtual systems
- Economic science of virtual system construction
- We have only (or not even) seen the tip of the iceberg.
- Versatile transaction systems
Final remarks

- Cryptography as the core enabling science of constructing virtual systems
- Economic science of virtual system construction
- We have only (or not even) seen the tip of the iceberg.
- Versatile transaction systems
- Autonomous digital objects
Final remarks

- Cryptography as the core enabling science of constructing virtual systems
- Economic science of virtual system construction
- We have only (or not even) seen the tip of the iceberg.
- Versatile transaction systems
- Autonomous digital objects
- Pro-control vs. anti-control dispute
Final remarks

- Cryptography as the core enabling science of constructing virtual systems
- Economic science of virtual system construction
- We have only (or not even) seen the tip of the iceberg.
- Versatile transaction systems
- Autonomous digital objects
- Pro-control vs. anti-control dispute
- Denmark and Switzerland are leading nations in this space.
Thank you!