Cryptography and Blockchains: Building the Bedrock of Information Society

Ueli Maurer

ETH Zürich

Univ. of Copenhagen, June 24, 2019, Copenhagen.

Whitfield Diffie (*1944)

Martin Hellman (*1945)

Inventors of public-key cryptography

James Massey (1934 USA – 1913 Copenhagen)

Founder of the IACR (International Association for Cryptologic Research)

Peter Landrock (born 1948)

Eminent Danish cryptographer

0110101101001011111101011

0110101101001011111101011

0110101101001011111101011

Effect of digital objects in the real world:

• execution of a program on a computer

0110101101001011111101011

- execution of a program on a computer
- transfer my entire account balance to account XY

0110101101001011111101011

- execution of a program on a computer
- transfer my entire account balance to account XY
- presentation using a virtual-reality interface

0110101101001011111101011

- execution of a program on a computer
- transfer my entire account balance to account XY
- presentation using a virtual-reality interface
- launch a nuclear missile

0110101101001011111101011

- execution of a program on a computer
- transfer my entire account balance to account XY
- presentation using a virtual-reality interface
- launch a nuclear missile
- trigger the end of humanity

0110101101001011111101011

- execution of a program on a computer
- transfer my entire account balance to account XY
- presentation using a virtual-reality interface
- launch a nuclear missile
- trigger the end of humanity

- execution of a program on a computer
- transfer my entire account balance to account XY
- presentation using a virtual-reality interface
- launch a nuclear missile
- trigger the end of humanity

Dilemma: functionality \leftrightarrow security

Functionality: One can efficiently decrypt using the key.

0110101101001011111101011

Security: One can **not** efficiently decrypt without the key.

- execution of a program on a computer
- transfer my entire account balance to account XY
- presentation using a virtual-reality interface
- launch a nuclear missile
- trigger the end of humanity

Dilemma: functionality \leftrightarrow security

Functionality: One can efficiently decrypt using the key.

<u>0110101101001011111101011</u>

Security: One can **not** efficiently decrypt without the key.

⇒ One cannot test or measure security. One can only prove it (mathematically).

- launch a nuclear missile
- trigger the end of humanity

1. "Protective" security

- 1. "Protective" security
 - defensive view
 - protect against system flaws and attacks
 - mission of software design/ formal methods

- 1. "Protective" security
 - defensive view
 - protect against system flaws and attacks
 - mission of software design/ formal methods

3 dilemmata:

- Functionality/security tradeoff dilemma
- Specification complexity dilemma
- Implementation impossibility dilemma

- 1. "Protective" security
 - defensive view
 - protect against system flaws and attacks
 - mission of software design/ formal methods

- 1. "Protective" security
 - defensive view
 - protect against system flaws and attacks
 - mission of software design/ formal methods
- 2. Construction of virtual trusted systems

- 1. "Protective" security
 - defensive view
 - protect against system flaws and attacks
 - mission of software design/ formal methods
- 2. Construction of virtual trusted systems
 - mission of cryptography

- 1. "Protective" security
 - defensive view
 - protect against system flaws and attacks
 - mission of software design/ formal methods
- 2. Construction of virtual trusted systems
 - mission of cryptography
 - virtual systems are also economic systems

Examples: T can be a

• a secure channel between 2 entities

- a secure channel between 2 entities
- voting system

- a secure channel between 2 entities
- voting system
- virtual central bank

- a secure channel between 2 entities
- voting system
- virtual central bank
- programmable transaction system

Scientific techniques:

- Consensus and Byzantine agreement protocols
- Secure multi-party computation (MPC)
- Blockchain protocols

• Cryptography as the core enabling science of constructing virtual systems

- Cryptography as the core enabling science of constructing virtual systems
- Economic science of virtual system construction

- Cryptography as the core enabling science of constructing virtual systems
- Economic science of virtual system construction
- We have only (or not even) seen the tip of the iceberg.

- Cryptography as the core enabling science of constructing virtual systems
- Economic science of virtual system construction
- We have only (or not even) seen the tip of the iceberg.
- Versatile transaction systems

- Cryptography as the core enabling science of constructing virtual systems
- Economic science of virtual system construction
- We have only (or not even) seen the tip of the iceberg.
- Versatile transaction systems
- Autonomous digital objects

- Cryptography as the core enabling science of constructing virtual systems
- Economic science of virtual system construction
- We have only (or not even) seen the tip of the iceberg.
- Versatile transaction systems
- Autonomous digital objects
- Pro-control vs. anti-control dispute

- Cryptography as the core enabling science of constructing virtual systems
- Economic science of virtual system construction
- We have only (or not even) seen the tip of the iceberg.
- Versatile transaction systems
- Autonomous digital objects
- Pro-control vs. anti-control dispute
- Denmark and Switzerland are leading nations in this space.

Thank you!